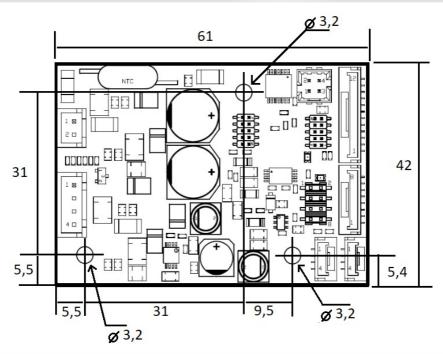


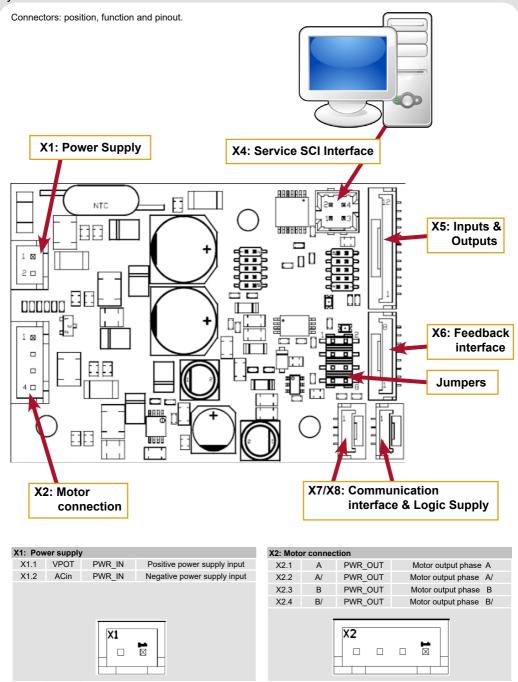
SB4D2030C2E1-3x - Controller SB4D2030M2E1-3x - Controller

Installation instructions

Controller bipolar open frame drive for 2 phase step motor:


- DC Power Supply: 12 ÷ 36Vdc
- DC Logic Supply: 24Vdc (mandatory)
- Phase current: up to 3 ARMS (4,2 APK)
- · Chopper frequency: ultrasonic 40KHz
- Stepless Control Technology (65536 position per turn)
- · Protections: over-current, over-temperature, short circuit phase-phase motor and phase-ground
- Direct feedback interface: incremental encoder (not isolated) 5Vdc TTL/CMOS or 24Vdc Push-Pull
- Modbus (SB4D2030M2E1-3x) or Canbus (SB4D2030C2E1-3x) communication interfaces (not isolated)
- · Service SCI interface for programming and real time debugging
- Enable Torque input not isolated (mandatory)
- 4 digital inputs (not isolated)
- 3 digital outputs (not isolated)
- 1 analog input
- Dimensions: 61 x 42 x 23mm (refer to picture)
- Pollution degree : 2
- Category C3 following standard EN 61800-3
- Working temperature 5°C ÷ 40°C; Storage temperature -25°C ÷ 55°C
- Humidity: 5% ÷ 85% not condensina

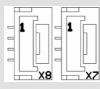
nd phase-ground



Mechanical data

Short_SB4D2O3Ox2E1-3x Rev. 0.2.01 Pag. 1 of 8

System connections



System connections

X4: Service SCI Interface					
X4.1	TX/RX	Transmit / Receive Line			
X4.2	DE/RE	Drive Enable Negated / Receive Enable			
X4.3	+5V	+5Vdc power out			
X4.4	GND	GND power out			

X7 / X8: Comm	X7 / X8: Communication interface & Logic supply						
	CANbus version	Modbus version					
X7.1 or X8.1	VI	_OG	Positive logic supply input				
X7.2 or X8.2	CAN_H	Data +	CANbus or Modbus signals				
X7.3 or X8.3	CAN_L	Data -	CANbus or Modbus signals				
X7.4 or X8.4	G	SND	Negative logic supply input				

X5: Inp	X5: Inputs & Outputs:						
	5 digital in	puts, 3 digit	al output and 1 analog input				
X5.1	V_POT	PWR_OUT	+5Vdc supply output for potentiometer				
X5.2	DIG_IN0	DIG_IN	Digital input IN0				
X5.3	DIG_IN1	DIG_IN	Digital input IN1				
X5.4	EN_TORQUE	DIG_IN	Digital input EN_TORQUE				
X5.5	DIG_IN3	DIG_IN	Digital input IN3				
X5.6	DIG_IN2	DIG_IN	Digital input IN2				
X5.7	IN_AN0	AN_IN	Analog input 0				
X5.8	Reserved	<u>^</u>	Reserved pin (see EN_TORQUE input connection paragraph pag.5)				
X5.9	DIG_OUT0	DIG_OUT	PNP digital output OUT0				
X5.10	DIG_OUT1	DIG_OUT	PNP digital output OUT1				
X5.11	DIG_OUT2	DIG_OUT	PNP digital output OUT2				
X5.12	GND	DIG_OUT	Reference ground for potentiometer				

X6: Fe	X6: Feedback interface					
X6.1	+5E	PWR_OUT	Positive +5Vdc power supply output			
X6.2	ENC_PHA	DIG_IN	Encoder Phase A input			
X6.3	ENC_PHB	DIG_IN	Encoder Phase B input			
X6.4	ENC_ZERO	DIG_IN	Encoder Zero Signal input			
X6.5	Reserved		Reserved pin (do not connect)			
X6.6	Reserved		Reserved pin (do not connect)			
X6.7	Reserved		Reserved pin (do not connect)			
X6.8	GND	PWR_OUT	Negative side of supply			
	X					

Dip-Switches and Jumper settings

Dip-Switches presence depends on the version of the system.

NOTE: the device reads the Dip-Switches only during the power up. If it's necessary a setting change, shut down the system, change the settings and start up the system again to make the changes operating.

When all DIPs in OFF position settings are defined by software.

Reserved		Node ID						В	aud Rate	
DIP1	DIP2	DIP3	DIP4	DIP5	DIP6	Function	DIP7	DIP8	Fun	ction
DIF	DIFZ	DIF3	DIF4	DIFS	DIF	Function	DIF	DIFO	CANbus	Modbus
OFF	OFF	OFF	OFF	OFF	OFF	Reserved	OFF	OFF	1 M	115200
(default)	OFF	OFF	OFF	OFF	ON	1 (default)	OFF	ON	500 K (default)	57600 (default)
ON	OFF	OFF	OFF	ON	OFF	2	ON	OFF	250 K	38400
	OFF	OFF	OFF	ON	ON	3	ON	ON	125 K	19200
	OFF	OFF	ON	OFF	OFF	4				
	OFF	OFF	ON	OFF	ON	5				
	ON	ON	ON	OFF	OFF	28				
	ON	ON	ON	OFF	ON	29				
	ON	ON	ON	ON	OFF	30				
	ON	ON	ON	ON	ON	31				

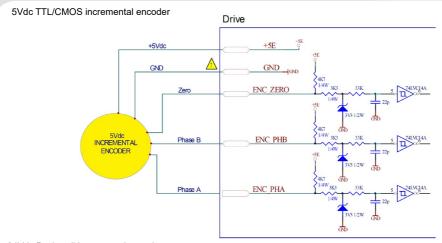
Jumpers						
Position	CANopen Version Modbus Version					
1 - 2	Reserved					
3 - 4	DO NOT CONNECT	MUST BE ALWAYS INSERTED				
5 - 6	MUST BE ALWAYS INSERTED	DO NOT CONNECT				
7 - 8	Insertion of 120 ohm termination resistor					

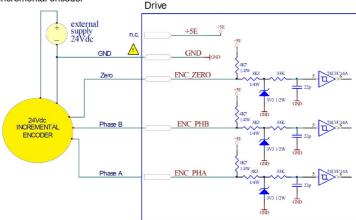
Rev. 0.2.01

Pag. 3 of 8

Working Status (Led)

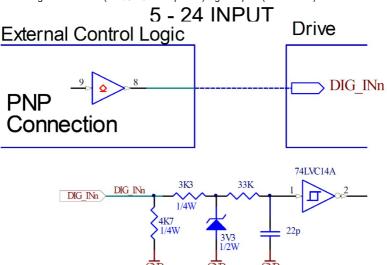
	Visualization status		Description
1		Green ON	Logic supply present
2	Ö	Green OFF	Logic supply NOT present
3		Red ON	Error


Service SCI connection


This connection is only possible with hardware and software provided by Ever.

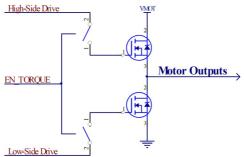
Feedback connection (not isolated)

24Vdc Push-pull incremental encoder


A

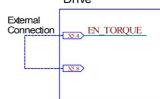
GND is internally in common with power ground, this is potentially dangerous. Take all necessary measures to avoid possible contacts in the final installation.

Digital inputs connection


5-24Vdc single-ended PNP (TTL/CMOS compatible) digital inputs (not isolated).

EN TORQUE input connection

5-24Vdc single-ended PNP (TTL/CMOS compatible) digital inputs (not isolated).

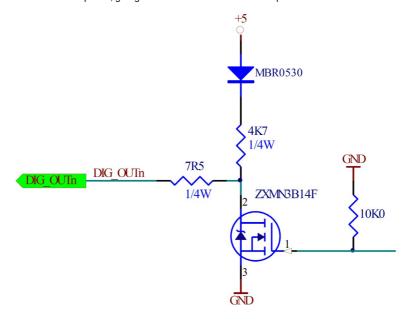


This is the enable signal for H-bridges that cannot be overidden by the control firmware:

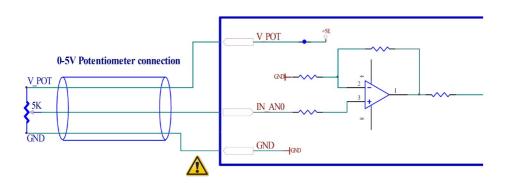
- Input floating or connected to GND = H-bridges are open (Safe state) and the High&Low Side drive
 outputs cannot be activated to drive the motor (motor not powered and without torque).
- Input connected to High voltage (5-24Vdc) = the microcontroller is able to control the outputs of the High&Low side drive and also to drive the motor.

If EN_TORQUE input is not used, it must be connected externally to pin X5.8 in order to enable the drive to control the motor.

Drive



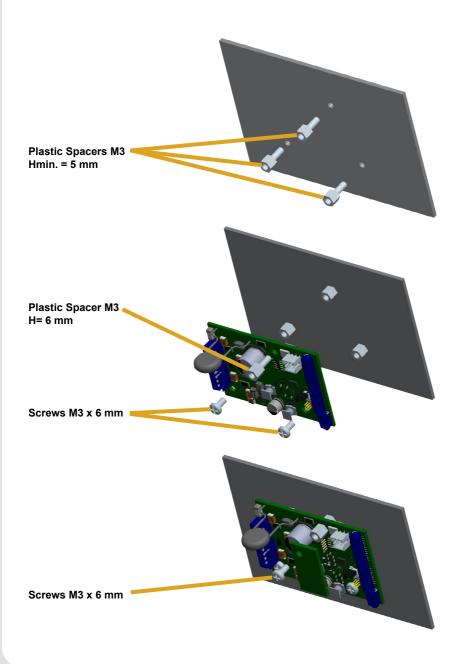
Digital outputs connection



Digital output Open-Drain digital outputs (not isolated).

They can sink up to 100mA from external loads operating from power supplies to \pm 24Vdc. The internal diode in the output is for driving inputs that are opto-isolated and connected to \pm 24Vdc. The diode prevents conduction from \pm 24Vdc through the 4,7 k Ω resistor to \pm 5Vdc in the drive. This could turn the input on, giving a false indication of the drive output state.

Analog input connection


⚠

GND is internally in common with power ground, this is potentially dangerous. Take all necessary measures to avoid possible contacts in the final installation.

Mounting instructions

Mounting the board on the mechanical support using only M3 plastic spacer with minimum height of 5mm in order to prevent every risk of short circuit with components

Mating connector kit

Connector		Description	
X1	JST cod. XHP-2	con crimp SXH-001T-P0.6	
X2	JST cod. XHP-4	con crimp SXH-001T-P0.6	
X5	JST cod. GHR-12V-S	con crimp SSHL-002T-P0.2	
X6	JST cod. GHR-08V-S	con crimp SSHL-002T-P0.2	
X7 / X8	JST cod. GHR-04V-S	con crimp SSHL-002T-P0.2	

Section of the cables

Function	Cable			
	Minimum	Maximum		
Power supply	0.3 mm ² (AWG22)			
Motor outputs	0.3 mm ² (AWG22)			
Feedback interface	0.05 mm ² (AWG30)	0.12 mm ² (AWG26)		
Inputs and Outputs	0.05 mm² (AWG30)	0.12 mm ² (AWG26)		
Communication interfaces	0.05 mm² (AWG30)	0.12 mm² (AWG26)		

Verify the installation

- Check all connection: power supply, logic supply and inputs/outputs.
- Make sure all settings right for the application.
- Make sure the power and logic supplies are suitable for the drive.
- If possible, remove the load from the motor shaft to avoid that wrong movements cause damage.
- Enable the current to the motor and verify the applied torque.
- Enable a movement of some steps and verify if the rotation direction is the desired one.
- Disconnect the power supply, connect the load on the motor and check the full functionality.

Check the detected fail fuction

When any of the following situations occur, the drive doesn't fuction correctly and it is reported an error.

DEFECT	CAUSE	ACTION
The external fuse to the drive burns.	May be due to a wrong connection of the power supply.	Adjust the connection and recover the fuse. Use a fuse suitable for the application.
Over temperature protection.	May be due to a duty cycle.	Increase the air flux and if it is possible chose a motor with higher torque at same current value.
Over current protection.	May be due to a short circuit on the motor power stage.	Shut down the power supply and check if the motor is damaged.
Noisy motor movement with vibrations.	May be caused due to a state of resonance.	Increase the resolution of the step angle and/or change the motor velocity to avoid resonance area.
The motor produce torque but doesn't rotate.	May be caused due to a wrong connection of the I/O's.	Check the connection of the I/O's.

EVER Elettronica

Via del Commercio, 2/4 - 9/11 Loc. San Grato Z. I 26900 - L O D I - Italy ELETTRONICA the clever drive

Phone +39 0371 412318 - Fax +39 0371 412367 email:infoever@everelettronica.it web: www.everelettronica.it