

# ever SW4D2042E241-00 - Controller

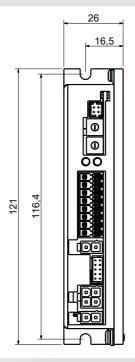
# Installation instructions

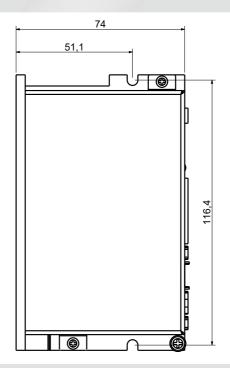


Refer to installation use and maintenance manual for more information.

## 2 phase bipolar stepper drive technical data:

- DC power supply: 12 ÷ 48 Vdc
- DC logic supply: 12 ÷ 48 Vdc (optional and not isolated)
- · Phase current: up to 6 Apeak
- · Chopper frequency: ultrasonic 40KHz
- Stepless Control Technology (65536 position per turn)
- Protections against: over current, over/under voltage, overheating, short circuit between motor phase-to-phase and phase-to-ground
- Ethernet communication interface (Modbus TCP/IP protocol)
- Encoder input (not isolated): 5V Differential (RS422) or 5V Single-Ended (TTL/CMOS) incremental encoder
- · Service SCI interface for programming and real time debugging
- 4 digital inputs (opto-coupled)
- 2 digital outputs (opto-coupled)
- Dimensions: 121 x 74 x 26 mm (without connectors)
- Protection degree: IP20
- Pollution degree: 2
- Category C3 following standard EN 61800-3
- Working temperature 5°C ÷ 40°C; Storage temperature -25°C ÷ 55°C
- Humidity: 5% ÷ 85% not condensing

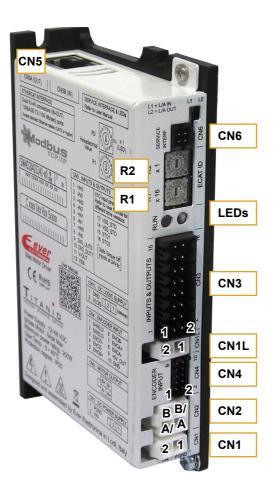

# TITANIO VECTOR - STEPPER - DRIVES








### Mechanical data






Short\_SW4D2042E241-x0 Rev. 0.1.01 Pag. 1 of 8

# System connections

Connectors:







Power and Logic supplies are not isolated but they have common reference inside the drive. (GND and PGND are in common).

# System connection

### CN1: Power supply

 2 positions, pitch 4.2mm double row, PCB header connector

 CN1.1
 PGND
 PWR\_IN
 Negative DC power supply input

 CN1.2
 VIN
 PWR\_IN
 Positive DC power supply input



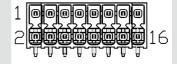
### **CN2: Motor connection**

| 4 positions, pitch 4.2mm double row, PCB header connector |    |         |                    |    |  |
|-----------------------------------------------------------|----|---------|--------------------|----|--|
| CN2.1                                                     | B/ | PWR_OUT | Motor output phase | B/ |  |
| CN2.2                                                     | Α  | PWR_OUT | Motor output phase | Α  |  |
| CN2.3                                                     | В  | PWR_OUT | Motor output phase | В  |  |
| CN2.4                                                     | A/ | PWR_OUT | Motor output phase | A/ |  |
|                                                           |    |         |                    |    |  |



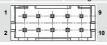
### CN1L: Logic supply

2 positions, pitch 4.2mm double row, PCB header connector
CN1L.1 GND PWR\_IN Negative DC logic supply input
CN1L.2 VLOG PWR IN Positive DC logic supply input






Not isolated from the power.


### CN3: Inputs and outputs

| 16 positions, pitch 3.5mm double row, PCB header connector |                                                                                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                          |  |  |  |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CN3.1                                                      | +IN3                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 3 positive side                                                                                                                                                                                                                                            |  |  |  |
| CN3.2                                                      | -IN3                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 3 negative side                                                                                                                                                                                                                                            |  |  |  |
| CN3.3                                                      | +IN2                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 2 positive side                                                                                                                                                                                                                                            |  |  |  |
| CN3.4                                                      | -IN2                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 2 negative side                                                                                                                                                                                                                                            |  |  |  |
| CN3.5                                                      | +IN1                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 1 positive side                                                                                                                                                                                                                                            |  |  |  |
| CN3.6                                                      | -IN1                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 1 negative side                                                                                                                                                                                                                                            |  |  |  |
| CN3.7                                                      | +IN0                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 0 positive side                                                                                                                                                                                                                                            |  |  |  |
| CN3.8                                                      | -INO                                                                                                                            | DIG_IN                                                                                                                                                                             | Digital input 0 negative side                                                                                                                                                                                                                                            |  |  |  |
| CN3.9                                                      | DIG_OUT0                                                                                                                        | DIG_OUT                                                                                                                                                                            | PNP digital output OUT0                                                                                                                                                                                                                                                  |  |  |  |
| CN3.10                                                     | DIG_OUT1                                                                                                                        | DIG_OUT                                                                                                                                                                            | PNP digital output OUT1                                                                                                                                                                                                                                                  |  |  |  |
| CN3.11                                                     | V_OUT                                                                                                                           | PWR_IN                                                                                                                                                                             | 24Vdc supply for digital output                                                                                                                                                                                                                                          |  |  |  |
| CN3.12                                                     | VSS                                                                                                                             | PWR_IN                                                                                                                                                                             | Negative input supply for digital output                                                                                                                                                                                                                                 |  |  |  |
| CN3.13                                                     | n.c.                                                                                                                            |                                                                                                                                                                                    | Not connected                                                                                                                                                                                                                                                            |  |  |  |
| CN3.14                                                     | n.c.                                                                                                                            |                                                                                                                                                                                    | Not connected                                                                                                                                                                                                                                                            |  |  |  |
| CN3.15                                                     | n.c.                                                                                                                            |                                                                                                                                                                                    | Not connected                                                                                                                                                                                                                                                            |  |  |  |
| 2CN3.16                                                    | n.c.                                                                                                                            |                                                                                                                                                                                    | Not connected                                                                                                                                                                                                                                                            |  |  |  |
|                                                            | CN3.1<br>CN3.2<br>CN3.3<br>CN3.4<br>CN3.5<br>CN3.6<br>CN3.7<br>CN3.8<br>CN3.9<br>CN3.10<br>CN3.11<br>CN3.11<br>CN3.12<br>CN3.13 | CN3.1 +IN3 CN3.2 -IN3 CN3.3 +IN2 CN3.4 -IN2 CN3.5 +IN1 CN3.6 -IN1 CN3.7 +IN0 CN3.8 -IN0 CN3.9 DIG_OUT0 CN3.10 DIG_OUT1 CN3.11 V_OUT CN3.12 VSS CN3.13 n.c. CN3.14 n.c. CN3.15 n.c. | CN3.1 +IN3 DIG_IN CN3.2 -IN3 DIG_IN CN3.3 +IN2 DIG_IN CN3.4 -IN2 DIG_IN CN3.5 +IN1 DIG_IN CN3.6 -IN1 DIG_IN CN3.7 +IN0 DIG_IN CN3.8 -IN0 DIG_IN CN3.9 DIG_OUT0 DIG_OUT CN3.10 DIG_OUT1 DIG_OUT CN3.11 V_OUT PWR_IN CN3.12 VSS PWR_IN CN3.13 n.c. CN3.14 n.c. CN3.15 n.c. |  |  |  |



### CN4: Encoder input connection

| 10 positions, pitch 2mm double row, PCB header connector |        |         |                                |  |  |  |
|----------------------------------------------------------|--------|---------|--------------------------------|--|--|--|
| CN4.1                                                    | SHIELD | 1       | Cable shield connection        |  |  |  |
| CN4.2                                                    | SHIELD | 1       | Cable shield connection        |  |  |  |
| CN4.3                                                    | ENCZ+  | DIG_IN  | Encoder Zero input positive    |  |  |  |
| CN4.4                                                    | ENCZ-  | DIG_IN  | Encoder Zero input negative    |  |  |  |
| CN4.5                                                    | ENCB+  | DIG_IN  | Encoder phase B input positive |  |  |  |
| CN4.6                                                    | ENCB-  | DIG_IN  | Encoder phase B input negative |  |  |  |
| CN4.7                                                    | ENCA+  | DIG_IN  | Encoder phase A input postive  |  |  |  |
| CN4.8                                                    | ENCA-  | DIG_IN  | Encoder phase A input negative |  |  |  |
| CN4.9                                                    | +5V    | PWR-OUT | +5Vdc power supply output      |  |  |  |
| CN4.10                                                   | GND    | PWR-OUT | Negative side of supply        |  |  |  |
| 1                                                        |        |         |                                |  |  |  |



### CN6: Service SCI interface

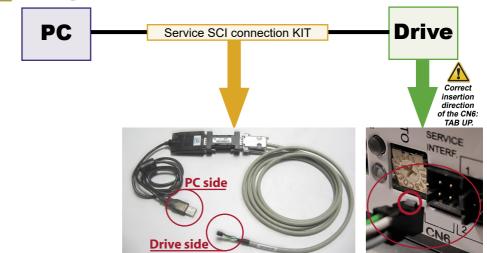
| + positions, pitch zimin double row, FCB header connector |       |                                       |  |  |  |
|-----------------------------------------------------------|-------|---------------------------------------|--|--|--|
| CN6.1                                                     | TX/RX | Transmit / Receive Line               |  |  |  |
| CN6.2                                                     | DE/RE | Drive Enable Negated / Receive Enable |  |  |  |
| CN6.3                                                     | +5V   | +5V power out                         |  |  |  |
| CN6.4                                                     | GND   | DNG power out                         |  |  |  |
|                                                           |       |                                       |  |  |  |



### CN5: Ethernet interface

RJ45, 8 positions shielded, PCB header connector

RJ45 connector 100BASE-TX (100Mb/sec) port Accept standard Ethernet cable (CAT5 or higher)




CN<sub>5</sub>

### Service SCI connection



This connection is  $\underline{\textit{only}}$  possible with hardware and software provided by Ever. Kit code: SW4\_SERV00-SL.



# Roto-Switches settings

$$\begin{array}{ccc} x \ 16 & x \ 1 \\ (MSD) & (LSD) \\ R1 & R1 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

|                  | Ethernet IP Address<br>(Last Significant Byte in Hexadecimal Value) |   |   |   |  |    |    |         |     |
|------------------|---------------------------------------------------------------------|---|---|---|--|----|----|---------|-----|
| R1 x 16<br>(MSD) | 0                                                                   | 0 | 0 | 0 |  | 2  | 2  | <br>F   | F   |
| R2 x 1<br>(LSD)  | 0                                                                   | 1 | 2 | 3 |  | С  | D  | <br>E   | F   |
| IP ADDRESS       | SW<br>settings<br>(default)                                         | 1 | 2 | 3 |  | 44 | 45 | <br>254 | 255 |

R1 (MSD): Most Significant Digit that must by multiplied per 16 R2 (LSD): Least Significant Digit that must by multiplied per 1

Example: 5C

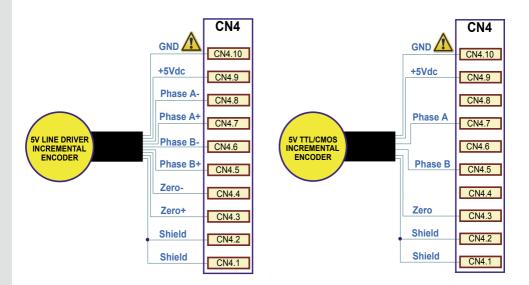
R1 = 5 ----> 5 x 16 = 80

R2 = C ----> 12 x 1 = 12 IP Address(Least Significant Byte) = 92

# Working Status (Led)

|    | Visu     | alization status                         | Description                                                                                               |
|----|----------|------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1  | •        | Green ON                                 | Communication Active with Master 'Operational'                                                            |
| 2  | 0        | Green Blinking                           | No-Communication with Master                                                                              |
| 3  | •        | Blue ON                                  | Error: connect with Service SCI kit and check with software                                               |
| 4  | •        | Blue ON and Yellow ON                    | Drive in boot mode. A new firmware should be downloaded to drive                                          |
| 5  | • •      | Blue ON Red Blinking (200ms)             | Initialization phase. Should last few seconds. While in this condition the drive is not fully operational |
| 6  |          | Yellow ON Red OFF Blue OFF               | Missing setting of Inominal                                                                               |
| 7  |          | Yellow Blinking (500ms) Red OFF Blue OFF | Warning : connect with Service SCI kit and check with software                                            |
| 8  |          | Red ON                                   | Protection: Motor is in open phase condition                                                              |
| 9  | 0        | Red Blinking (200ms)                     | Current protection                                                                                        |
| 10 | • •      | Red ON (1sec) + Yellow 1 Blink           | Undervoltage protection                                                                                   |
| 11 | •000     | Red ON (1sec) + Yellow 3 Blink           | Thermal protection                                                                                        |
| 12 | •0000    | Red ON (1sec) + Yellow 4 Blink           | Motor Feedback Error                                                                                      |
| 13 | •00000   | Red ON (1sec) + Yellow 5 Blink           | Missing Safe Torque Off                                                                                   |
| 14 | •000000  | Red ON (1sec) + Yellow 6 Blink           | Motor Current Regulation is out of range                                                                  |
| 15 | •0000000 | Red ON (1sec) + Yellow 7 Blink           | e3PLC User Protection (generated by setting bit #0 of e3PLC_User_Settings)                                |




NOTE: Drive could be considered in a correct status if leds Red, Yellow and Blue are all OFF. In general:

- · Led Blue indicates a software internal fault or a non-operative condition
- · Led Red indicates an alarm or a drive protection
- · Led Yellow indicates a warning

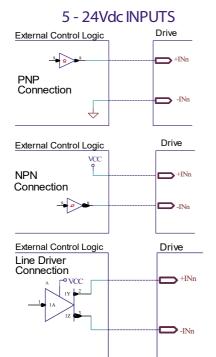
# **Encoder input connection**

Electrically NOT-isolated digital inputs:

- Differential 5Vdc that meet the RS422 standard
- Single-Ended 5Vdc TTL/CMOS



Maximum suplpy current 100 mA.



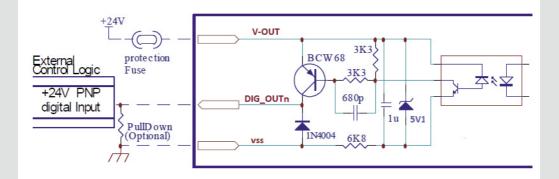

GND is internally in common with power ground, this is potentially dangerous. Take all necessary measures to avoid possible contacts in the final installation.

# Digital inputs connection



Differential PNP, NPN and Line Driver type.




| INO & IN1                   |      |      |      |  |  |
|-----------------------------|------|------|------|--|--|
| Characteristics             | MIN. | MAX. | Unit |  |  |
| Supply voltage              | 5    | 24   | Vdc  |  |  |
| Inputs frequency            |      | 10   | kHz  |  |  |
| Threshold switching voltage | 1.9  | 2.4  | Vdc  |  |  |
| Current at 5 Vdc            |      | 6.28 | mA   |  |  |
| Current at 24 Vdc           |      | 8.75 | mA   |  |  |

| IN2 & IN3                   |      |      |      |  |  |
|-----------------------------|------|------|------|--|--|
|                             |      |      |      |  |  |
| Characteristics             | MIN. | MAX. | Unit |  |  |
| Supply voltage              | 5    | 24   | Vdc  |  |  |
| Inputs frequency            |      | 250  | kHz  |  |  |
| Threshold switching voltage | 1.9  | 2.4  | Vdc  |  |  |
| Current at 5 Vdc            |      | 7.52 | mA   |  |  |
| Current at 24 Vdc           | -    | 10   | mA   |  |  |

# Digital outputs connection



Digital outputs are PNP with VouTmax = 24 Vdc, IouTmax = 100 mA, Fmax = 40 kHz.



# Mating connectors

| Connector | Description                               |
|-----------|-------------------------------------------|
| CN1       | Molex 39-01-2025                          |
| CN1L      | Molex 39-01-2025                          |
| CN2       | Molex 39-01-2045                          |
| CN3       | Weidmuller 1727690000                     |
| CN4       | Hirose DF11-10DS-2C                       |
| CN5       | Ethernet standard cables (CAT5 or higher) |

### Section of the cables

| Function            | Cable                |                       |  |  |
|---------------------|----------------------|-----------------------|--|--|
|                     | Minimum              | Maximum               |  |  |
| Power supply and PE | 0.5 mm² (AWG20)      | 1.3 mm² (AWG16)       |  |  |
| Motor outputs       | 0.5 mm² (AWG20)      | 1.3 mm² (AWG16)       |  |  |
| Encoder input       | 0.08 mm² (AWG28)     | 0.2 mm² (AWG24)       |  |  |
| Inputs and Outputs  | 0.2 mm² (AWG24)      | 1.3 mm² (AWG16)       |  |  |
| EtherCAT interfaces | Ethernet standard ca | bles (CAT5 or higher) |  |  |

# Verify the installation

- Check all connection: power supply and inputs/outputs.
- Make sure all settings right for the application.
- Make sure the power supply is suitable for the drive.
- If possible, remove the load from the motor shaft to avoid that wrong movements cause damage.
- Enable the current to the motor and verify the applied torque.
- Enable a movement of some steps and verify if the rotation direction is the desired one.
- Disconnect the power supply, connect the load on the motor and check the full functionality.

### Analysis of malfunctions



When any of the following situations occur, the drive is placed in a fault condition.

| DEFECT                                            | CAUSE                                                                  | ACTION                                                                                                                   |
|---------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Intervention of the themal protection.            | Can be caused by a heavy working cycle or a high current in the motor. | Improve the drive cooling by a natural or fan air flow.  Consider to use a motor with a higher torque vs current rating. |
| Intervention of the current protection.           | Short circuit on the motor powering stage(s) of the drive.             | Check motor windings and cables to remove the short circuits replacing faulty cables or motor if necessary.              |
| Intervention of the over/under voltage protection | Supply voltage out of range.                                           | Check the value for the supply voltage.                                                                                  |
| Open phase motor protection.                      | Motor windings to drive not proper connection.                         | Check motor cables and connections to the drive.                                                                         |



When any of the following situations occur, the drive doesn't work and isn't placed in an error condition.

| DEFECT                                                        | CAUSE                                                                                                         | ACTION                                                                                                                               |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Noisy motor movement with vibrations.                         | Can be caused by a lack of power supply to a phase of the motor or a poor regulation of the winding currents. | Check the cables and connections of the motor and/or change the motor speed to avoid a resonance region.                             |
| The external fuse on the power supply of the drive is burned. | Can be caused by a wrong connection of the power supply.                                                      | Connect the power supply correctly and replace the fuse.                                                                             |
| At high speed, the motor torque is not enough.                | Can be due to a 'self-limitation' of motor current and torque.                                                | Increase the motor current (always within the limits), increase the supply voltage, change motor connection from series to parallel. |

Ever Motion Solutions
Via del Commercio, 2/4 - 9/11
Loc. San Grato Z. I
26900 - L O D I - Italy
Phone +39 0371 412318 - Fax +39 0371 412367
email:infoever@everelettronica.it
web: www.everelettronica.it