Installation instructions

i
Refer to installation use and maintenance manual for more information.
Available user manual at link http://www.everelettronica.it/manhw.html

2 phase bipolar stepper drive technical data:

-AC power supply: 85-265 Vac monophase or triphase;

- DC logic supply: 24 Vdc (mandatory and isolated);
- Phase current: up to 5.2 Arms (7.3 Apk) with 265VAC MAX or 8 Arms (11.3 Apk) with 120VAC MAX
- Chopper frequency: ultrasonic 40 KHz
- Stepless Control Technology (65536 position per turn)
- Protections against: over current, over/under voltage, overheating, short circuit between motor phase-tophase and phase-to-ground
- Ethernet communication interface (Modbus TCP/IP protocol)
- Incremental Encoder Input: 5V Differential (RS422) or 5V single-ended TTL/CMOS
- Incremental Encoder Output: 5V Differential (RS422)
- Absolute Encoder Input: 5V BISS-C or SSI interface
- Service SCI interface for programming and real time debugging
- Safe Torque Off (STO) inputs (opto-coupled)
- 16 digital inputs (opto-coupled) SW5A9052E2G1-30 or 4 digital inputs (opto-coupled)
- 12 digital outputs (opto-coupled) SW5A9052E2G1 or 3 digital outputs (opto-coupled
- 2 analog inputs (isolated) SW5A9052E2G1-30 only
- 2 analog outputs (isolated) SWA9052E2G1-30 only
- Dimensions: $196.6 \times 136.6 \times 47$ mm (without connectors)
- Protection degree: IP20;
- Pollution degree 2
- Overvoltage Category III
- Short Circuit Current: 5 KA
- Protection Class: Class I Equipment
- Working temperature $5^{\circ} \mathrm{C} \div 50^{\circ} \mathrm{C}$; Storage temperature $-25^{\circ} \mathrm{C} \div 55^{\circ} \mathrm{C}$
- Humidity: $5 \% \div 85 \%$ not condensing ${ }_{c} \mathrm{NH}_{\mathrm{us}}$

STO
Safe Torque Off SIL3 PLe

Mechanical data

Ordering codes characterisitcs

System code	Digital inputs	Digital outputs	Analog inputs	Analog outputs
SW5A9052E221-30	4	3	0	0
SW5A9052E2G1-30	16	12	2	2

System connections

Connectors:

System connection

CN1: AC Power supply

3 positions, pitch 5.08 mm double row, PCB header connector

CN1L: 24Vdc Logic Supply and STO inputs

6 positions, pitch 3.5 mm double row, PCB header connector			
CN1L. 1	VLOG -	PWR_IN	Negative DC logic supply input
CN1L. 2	VLOG +	PWR_IN	Positive DC ogic supply input
CN1L. 3	STO1 -	PWR_IN	STO1 input negative side
CN1L. 4	STO1 +	PWR_IN	STO1 input positive side
CN1L. 5	STO2 -	PWR_IN	STO2 input negative side
CN1L. 6	STO2 +	PWR_IN	STO2 input positive side
		1 LOGIC 24 Vdc MANDATORY and ISOLATED	

CN6: Service SCI Interface

RJ11, 6P4C, PCB header connector

CN6.1	TX/RX	Transmit / Receive Line
CN6.2	DE/RE	Drive Emable Negated /Receive Enable
CN6.3	+5 V	+5 V power out
CN6.4	GND	GND power out

This connection is only possible with hardware and software provided by Ever.

System connections

CN10: Digital I/O \#2
26 positions, pitch $3,5 \mathrm{~mm}$ double row, PCB header connector

| CN10.1 | +24Vdc | PWR_IN | 24 Vdc supply for digital outputs B1 on CN10 |
| :--- | :---: | :---: | :--- | :--- |
| CN10.2 | VSS\#2 | PWR_IN | Negative reference for digital inputs and outputs on CN10 |
| CN10.3 | VSS\#2 | PWR_IN | Negative reference for digital inputs and outputs on CN10 |

CN10.4 B0_OUT3 DIG_OUT PNP digital output B0_OUT3
CN10.5 B1_OUT0 DIG_OUT Digital output B1_OUT0 (PNP)
CN10.6 B1_OUT1 DIG_OUT Digital output B1_OUT1 (PNP)
CN10.7 B1_OUT2 DIG_OUT Digital output B1_OUT2 (PNP)
CN10.8 B1_OUT3 DIG_OUT Digital output B1_OUT3 (PNP)
CN10.9 B1_OUT4 DIG_OUT Digital output B1_OUT4 (PNP)
CN10.10 B1_OUT5 DIG_OUT Digital output B1_OUT5 (PNP)
CN10.11 B1_OUT6 DIG_OUT Digital output B1_OUT6 (PNP)
CN10.12 B1_OUT7 DIG_OUT Digital output B1_OUT7 (PNP)
CN10.13 B0_IN8 DIG_IN Digital input B0_IN8
CN10.14 B0_IN9 DIG_IN Digital input B0_IN9
CN10.15 B0_IN10 DIG_IN Digital input B0_IN10
CN10.16 B0_IN11 DIG_IN \quad Digital input B0_IN11

CN10.17	B0_COM_IN	PWR_IN	Reference common inputs B0 on CN10
CN10.18	B1_IN0	DIG_IN	Digital input B1_IN0
CN10.19	B1_IN1	DIG_IN	Digital input B1_IN1
CN10.20	B1_IN2	DIG_IN	Digital input B1_IN2
CN10.21	B	D	Digital input B1_N3
CN10.22	B1_IN4	DIG_IN	Digital input B1_IN4
CN10.23	B1_IN5	DIG_IN	Digital input B1_IN5
CN10.24	B1_IN6	DIG_IN	Digital input B1_IN6
CN10.25	B1_IN7	DIG_IN	Digital input B1_IN7
CN10.26	B1_COM_IN	PWR_IN	Reference common inputs B1 on CN10

CN11: Analog 1/O			
10 positions, pitch $3,5 \mathrm{~mm}$ double row, PCB header connector			
CN11.1	AVSS	PWR_OUT	Negative output reference for
CN11.2	OUT_ANO	AN_OUT	Analog output 0 positive side
CN11.3	AVSS	PWR_OUT	Negative output reference for
CN11.4	OUT_AN1	AN_OUT	Analog output 1 positive side
CN11.5	-IN_ANO	AN_IN	Analog input 0 negative side
CN11.6	+IN_ANO	AN_IN	Analog input 0 positive side
CN11.7	-IN_AN1	AN_IN	Analog input 1 negative side
CN11.8	+IN_AN1	AN_IN	Analog input 1 positive side
CN11.9	AGND	PWR_OUT	Negative output reference
CN11.10	VPOT	PWR_OUT	Voltage supply output

CN12: Ethernet Interface

RJ45, 8 positions shielded, PCB header connector
RJ45 connector
100BASE-TX ($100 \mathrm{Mb} / \mathrm{sec}$) port
Accept standard Ethernet cable (CAT5 or higher)

Service SCI connection

\triangle
This connection is only possible with hardware and software provided by Ever.
Kit code: SW5_SERV00-SL or SW5-SERV00-EE.

Dip-Switches Settings

NOTE: the device reads the Dip-Switches only during the Power up. If it's necessary a setting change, shut down the system, change the settings and start up the system again to make the changes operating.

The functionality of the Dip-Switches depends on the Firmware installed on the drive. (Refer to the Software Manual).

The default configuration of the DIPs is :

- DIP1.5 and DIP1.8 = ON other contacts DIP1 = OFF
- DIP2 = all OFF

Operational statuses and their signals

1	Missing Operating System: no software application stored on drive
if	Firmware update: Updating of new software in progress.
!	Initialization: the drive executes the start-up procedure (a few seconds after the start-up procedure has begun).
E	Correct functioning
$E+i$	Voltage of the DC bus near to the limit value (minimum or maximum)
$E+\cdots$	Warning : Drive temperature is near to the maximum value
$E+7$	Warning: EEprom near Write Overrun
$E+0$	Warning: EEprom near End of Life
5 flashing	Enable OFF, current zero
- flashing	Inominal not computed
$E+$	Error: expired eePLC software trial
$5+5$	Error: Security intervention of watchdog
$F+i$	Error: Internal Software Error
$5+0$	Error: Missing calibration values
$E+9$	Error: Management EEPROM
$5+6$	Error: EEPROM fail
$E+5$	Error: eePLC application error
$E+5$	Error: EEprom Write Overrun
$E+i$	Error: Feature Unavailable (the application tried to use a feature that is not available in the current drive configuration)
$0+i$	Open motor phases
$9+i$	Over/under voltage;
9	Over current on the motor output;
	Over temperature of the drive;
5	Missing Torque Enable ("missing Safe Torque Off")
5	Drive over power protection and/or current regulation out of range
$9+9$	eePLC User Protection (generated by setting bit \#0 of eePLC_User_Settings)
	Motor feedback error

Power \& Logic Supply connections

Absolute Encoder input connection

(Maximum supply current 100 mA)
Differential 5Vdc digital inputs that meet the RS422 standard.

Incremental Encoder input connection
(Maximum supply current 100 mA)
Differential 5Vdc digital inputs that meet the RS422 standard.

Single-Ended 5Vdc TTL/CMOS digital inputs

Outputs reports the used interface for encoder input : Differential or Single-Ended.
Differential 5V digital outputs that meets RS422 stardard.

Safe Torque Off inputs (STO)

2 terminals, 24 V compatible (optoisolated)

STO1	STO2	Drive Status	Motor Status
+24 Vdc	+24 Vdc	Enable	SW controlled
+24 Vdc	Not connected	Disable	Stop for inertia
Not connected	+24 Vdc	Disable	Stop for inertia
Not connected	Not connected	Disable	Stop for inertia

STO inputs are optoisolated, shall not be used the same 24 Vdc of logic supply for their connection.
Safety specifications

Safety functionCategory Performance Level Safety Integrity Level	$\begin{array}{\|l\|} \hline \text { STO } \\ 4 \\ \text { PLe } \\ \text { SIL3 } \\ \hline \end{array}$	Safe Torque Off In according with EN ISO 13849-1 In according with EN ISO 13849-1 In according with EN ISO 13849-1 table 3
DC ${ }_{\text {avg }}$ [\%]	99	Average Diagnostic Coverage
$\mathrm{PFH}_{\mathrm{D}}$ [1/h]	6.44×10^{-9}	Probability of dangerous failure per hour
T Service Life [Years]	20	In accordance with EN ISO 13849-1
Type test	The STO function has been certified by an independent testing body.	

i
Refer to the "Safety Manual_STO on SW5-AW5 Series" for more details of the Safe Torque Off function characteristics.
Principle of operation:

The drive has a safety feature that is designed to provide the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Two input signlas are provided which, when not connected, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When both STO signals are activated (current is flowing in the input diodes of the optocouplers), the control core will be able to control the on/off state of the PWM outputs.

i
If not using the STO feature, both signals must be connected to a 24 Vdc supply in order enabled the drive.

1
If a drive in operation mode is disabled by STO signal, it immediately finish to produce torque but the motor continues to run by inertia until it can stop.

Digital input connection (BO_INO to BO_IN3)

i
Differential PNP, NPN and Line Driver type.

2-24V INPUT

B0_IN0 and B0_IN1			
Characteristics	MIN.	MAX.	Unit
Supply voltage	2	(1)	24
Inputs frequency	--	10	kdc
Threshold switching voltage	1.61	(1)	--
Vdc	\|		
Current at 2 Vdc	--	2.53	mA
Current at 3.3 Vdc	--	5.84	mA
Current at 5 Vdc	--	6.28	mA
Current at 24 Vdc	--	8.75	mA

B0_IN2 and B0_IN3			
Characteristics	MIN.	MAX.	Unit
Supply voltage	2	(1)	24
Inputs frequency	--	500	kdc
Threshold switching voltage	1.61		
(1)	--	Vdc	\|
Current at 2 Vdc	-	2.53	mA
Current at 3.3 Vdc	--	5.84	mA
Current at 5 Vdc	--	6.28	mA
Current at 24 Vdc	--	8.75	mA

(1) N.B.: it's recommended to use 2 Vdc digital inputs only in differential Line-Driver configuration to have more noise immunity.

Digital inputs connection (B0_IN8 to B0_IN11)
\square Single-Ended PNP, NPN, Push-Pull

Characteristics	MIN.	MAX.	Unit
Supply voltage	5	24	Vdc
Inputs frequency	-	100	Khz
Threshold switching voltage	2	-	Vdc
Current at 5 Vdc	-	2	mA
Current at 24 Vdc	--	12	mA

N.B.: All these inputs must be connected with the same configuration (PNP, NPN or Push-Pull).

Digital inputs connection

Digital inputs connection (B1_IN0 to B1_IN7)

i
Single-Ended PNP, NPN, Push-Pull

Characteristics	MIN.	MAX.	Unit
Supply voltage	5	24	Vdc
Inputs frequency	-	250	Hz
Threshold switching voltage	2	-	Vdc
Current at 5 Vdc	--	2	mA
Current at 24 Vdc	--	12	mA

N.B.: All these inputs must be connected with the same configuration (PNP, NPN or Push-Pull).

Digital outputs connection

Digital outputs connection (B0_OUT0 and B0_OUT1)

i
PNP with VouTmax $=24 \mathrm{Vdc}$, IouTmax $=100 \mathrm{~mA}$, Fmax $=500 \mathrm{KHz}$

Digital outputs connection (B0_OUT2)
i
PNP with VouTmax $=24 \mathrm{Vdc}$, IOUTmax=1.3A, Fmax $=1 \mathrm{KHz}$

Digital outputs connection (B0_OUT3)
1
PNP with VOUTmax $=24 \mathrm{Vdc}$, IOUTmax $=500 \mathrm{~mA}$, Fmax $=1 \mathrm{KHz}$

Digital outputs connection (B1_OUT0 and B1_OUT7)

PNP with VouTmax $=24 \mathrm{Vdc}$, IOUTmax $=100 \mathrm{~mA}, \mathrm{Fmax}=250 \mathrm{~Hz}$

Analog inputs connection

Isolated configurable analog inputs. The resolution of the analog inputs depends from the type of the connection which could be defined by software: differential or potentiometer.

Differential connection

Potentiometer connection

Analog outputs connection

\square 0-10V Isolated analog outputs.

External Device

In order to comply with cURus certification according to the UL 61800-5-1 standard, the following requirements must be met:

${ }^{\text {ch }}{ }_{\text {us }}$ File number E363861

Eating system

IT or TN (not corner earthed).
The drive shall considered only for use in system voltage where the maximum voltage between the ungrounded conductors and ground does not exceed 150 V

Maximum lenght of the cables

Cable	Lenght
AC Power Supply	No limitation
24 Vdc Power supply \& STO	No limitation
Motor	$<30 \mathrm{~m}$
Feedback	$<30 \mathrm{~m}$
Input \& Output	$<30 \mathrm{~m}$
Fieldbus	$<30 \mathrm{~m}$

Motor cable must be shielded

Fuses on AC Power Supply

In the final installation use only Cooper Bussmann FWX-20 A14F fast fuses on AC bus with 20Arms of current, 250Vac voltage and interrupt rating 200KA or any equivalent UL Listed or UL Recognized External Semiconductor Fuses, on condition that these fuses have the same ratings of the above fuse in particular with "Peak-let-trough-current Ip" and "Clearing 12 t "

Discharge time of the capacitors on the AC power supply

CAUTION - Risk of Electric Shock
Time required for the discharge of the capacitors after the removal of the AC power supply: 4 minutes.

Dissipation

To reach the maximum performances with 100% of duty cycle, the drive shall be fixed on the side to an aluminum heat-sink with dimension of $330 \times 305 \mathrm{~mm}$ with 5 mm in thickness and with an external R/C Fans, Electric (GPWV2/8) with an Air flow rate minimum of $50 \mathrm{~m} 3 / \mathrm{h}$ positoned on the bottom side of the device like indicated in the picture above. Use with a smaller aluminum heat-sink and a lower Fan Air Flow shall be taken into consideration in the end-use application.

Mating connectors

Connector	Description
CN1	Phoenix 1762208 (Green) or 1759509 (Black)
CN1L	Phoenix 1790111 (Green) or 1708329 (Black)
CN2	Phoenix 1786190 (Green) or 1731196 (Black)
CN4	Phoenix 1790153 (Green) or DFMC 1,5/ 7-ST-3,5 BK (Black)
CN10	Phoenix 1844691
CN11	Phoenix 1790218 (Green) or DFMC 1,5/13-ST-3,5 BK (Black)
CN12	RJ45 for Ethernet standard cables (CAT5 or higher)

Section of the cables

Function	Cable	
	Minimum	Maximum
Power supply and PE	$0.5 \mathrm{~mm}^{2}$ (AWG20)	$2.5 \mathrm{~mm}^{2}$ (AWG12)
Motor output	$0.5 \mathrm{~mm}^{2}$ (AWG20)	$2.5 \mathrm{~mm}^{2}$ (AWG12)
Feedback	$0.12 \mathrm{~mm}^{2}$ (AWG26)	$0.5 \mathrm{~mm}^{2}$ (AWG20)
Logic supply and Inputs / Outputs	0.5 mm² (AWG20)	$1.3 \mathrm{~mm}^{2}$ (AWG16)
Communication interfaces	Ethernet standard cables CAT5 or higher	

Verify the installation

- Check all connection: power supply, logic supply, STO inputs and inputs/outputs
- Make sure all settings right for the application.
- Make sure the power supply is suitable for the drive.
- If possible, remove the load from the motor shaft to avoid that wrong movements cause damage.
- Enable the current to the motor and verify the applied torque.
- Enable a movement of some steps and verify if the rotation direction is the desired one.
- Disconnect the power supply, connect the load on the motor and check the full functionality.

Analysis of malfunctions

When one of the following situations occur, the drive doesn't function correctly and it is reported an error.

DEFECT	CAUSE	ACTION
The external fuse to the drive burns	May be due to a wrong connection of the power supply.	Adjust the connection and recover the fuse. Use a fuse suitable for the application.
Over temperature protection.	May be due to a duty cycle	Increase the air flux and if it is possible chose a motor with higher torque at same current value.
Over current protection.	May be due to a short circuit on the motor power stage.	Shut down the power supply and check if the motor is damaged
Noisy motor movement with vibrations.	May be caused due to a state of resonance.	Increase the resolution of the step angle and/or change the motor velocity to avoid resonance area
The motor produce torque but doesn't rotate	May be caused due to a wrong connection of the I/O's.	Check the connection of the I/O's

EVER Elettronica

Via del Commercio, 2/4-9/11 Loc. San Grato Z. I 26900 - L O D I - Italy
Phone +39 0371412318 - Fax +39 0371412367
email:infoever@everelettronica.it
web: www.everelettronica.it

